(Towards) Multi-Order Hard X-Ray Imaging with Multilayer Zone Plates

Markus Osterhoff¹, Robin Wilke¹, Jesper Wallentin¹, Christian Eberl², Florian Döring², Hans-Ulrich Krebs², Michael Sprung³, Tim Salditt¹

¹ Institut für Röntgenphysik, Uni Göttingen
² Institut für Materialphysik, Uni Göttingen
³ DESY Photon Science, Hamburg

Thanks to:

Aike Ruhlandt¹, Sarah Hoffmann¹, Anna-Lena Robisch¹, Felix Schlenkrich², Alexey Zozulya³, Thomas Hoinkes⁴, Arno Rauschenbeutel⁴

 ${}^{\scriptscriptstyle 4}$ Vienna Center for Quantum Chemistry and Technology

Former group members: Matthias Bartels¹, Sven-Philip Krüger¹, Tobias Liese²

Technical support:

Bastian Hartmann¹, Jan Goeman¹, Volker Radisch²

Funding:

Deutsche Forschungsgemeinschaft, SFB 755 BMBF, Grants No. 05KS7MGA, 05K10MGA

Outline

Introduction: XRM and MZP

Focusing with MZPs

Imaging methodologies

Summary & Outlook

History

It is, hence, obvious that lenses cannot be looked upon as capable of concentrating the X-rays. Wilhelm Conrad Röntgen, 1895

Efficiency

((no absorption)

Figure 7. Scanning electron microscope image of (a) 0.5 μ m and (b) 1 μ m thick Fresnel zone plates fabricated by electroplating Au in PMMA molds that were produced by directly writing into the resist with 100 keV electrons. The insets present magnified inner and outer regions of the devices.

The "gold" standard:

- E-Beam Lithography,
- Electroplating
- Aspect ratios of > 20 possible; phse-shifting FZPs for ~ 8 keV
- S. Gorelick, C. David et al, Nanotechnology 2010

Focusing with MZPs

(Binary) Zone Plate Law:

$$r_n = \sqrt{\left(\frac{n\,\lambda}{2}\right)^2 + n\,\lambda\,f}$$

zone radius for given wavelength and focal length

absorption vs. phase-shifting:

efficiency varies as a function of optical thickness waveguiding effects for thin zones layer roughness / fluctuations optimal profile along optical axis

MZP focus multiple orders / diverging orders: -f/3 +f/3 here: Ta_2O_5 / ZrO_2 +fhere: Bilayer thickness [nm] hollow cone n = 12 ... 81 illumination 0.47 mm = 0.00 nm $\lambda =$ E = 18.0 keV20 # Bilaver

detector

±3rd Order

Fabrication: Pulsed Laser Deposition and Focused Ion Beam

Döring et al., Optics Express (2013)

layer thicknesses: **3 nm** ... 30 nm wire / glass core: < 1 μm ... 2 μm # layers: 50 ... 80 in x-rays latest MZP size: Ø **9 μm** and growing advantage PLD: *cumulative smoothening* so outer layers are

better than inner ones

Poster on MZP fabrication:

PLD parameters:

Poster #4 on Tuedsay's session Ta_2O_5 / ZrO₂ C. Eberl et al. 2.6 J / cm2 @ 10 Hz

40 nm / 1000 pulses ~ 20 minutes

nearly constant, monitored rate

FIB slicing of individual an lens,

mounted on a support wire

optical thickness ~ 10 μ m

Poster on MZP fabrication:

Poster #4 on Tuedsay's session C. Eberl et al.

Rough wire – Let's simulate it! – Let's try it!

(c) exit wave: A=7nm

Summary: Focusing

5 nm focusing @ 7.9 keV, 13.8 keV 10 nm @ 18.0 keV

only indirect characterisation via phase-retrieval inconsistent ptychography along optical axis

lin. intens. 0

0.5

0.0

The new system: Ta₂O₅ / ZrO₂

E = 18 keV1 µm slit in W foil hologram in -1st MZP order demagnified Pilatus 300k pixel size: 32nm

(C) Empty Correction

2 Norm. Intensity

Phase Retrieval

X,Y: detector pixel coordinates x,y: scan positions Ih: centre-of-mass,

horizontal direction

~ differential phase contrast

$$I_h(x,y) = \frac{\sum_{X,Y \in \text{ROI}} X \cdot I(x,y;X,Y)}{\sum_{X,Y} \prod_{\in \text{ROI}} I(x,y;X,Y)}$$

Imaging modes:

- holography,
- STXM,

STXM with holographic -1st order

0

Problem: for simple STXM analyis, e.g. differential phase contrast, resolution is limited by beam size;

here: beam size of -1st order is roughly 6 μ m in +1st focal plane

(a) Single Holographic Image

(C) STXM / holographic -1st order ROIs

(b) STXM / full detector

(**d**) STXM / +1st order ROI

urad Refraction -20 0

161 × 161 images, lines in fly-mode (continuous scan) scan area: 4 µm × 4 µm illumination time / point: 10 ms

STXM parameters:

beam sizes:

10 nm in +1st order

(but sample not in focal plane)

6 µm in -1st order

 $3 \,\mu m$ in 0^{th} order

"step" size: 25 nm

finest details: 50 nm

but vibrations: ~ 50 nm

Summary: Imaging

- quantitative Fresnel edge diffraction
- holographic imaging of nanowire
- holographic STXM of Siemens star
- resolution so far: 50 nm
- currently limited by vibrations
- focusing efficiency: 6.9 % @ 18 keV

a long way to go ...

Roadmap: our workplan for the near future

From focusing to imaging

Design, fabrication, and application of multilayer zone plates for two-dimensional hard x-ray imaging with resolution of below 10 nm

Roadmap: our workplan for the near future

Lens design and fabrication

efficiency by thick ML

wedged / curved / tilted structures

calculation of optimal design

how to PLD such a shape?

Roadmap: our workplan for the near future

Experiment and data analysis

new scanner, interferometer

non uniform scanning, interferometric control

topics to be addressed: + include positions in STXM, + improved holographic reconstruction, + automatic analysis for scans, + ptychography

Summary & Outlook:

Design, fabrication, and application of multilayer zone plates for two-dimensional hard x-ray imaging vibrations with resolution of below 10 nm efficiency data analysis

(Towards) Multi-Order Hard X-Ray Imaging with Multilayer Zone Plates

Markus Osterhoff¹, Robin Wilke¹, Jesper Wallentin¹, Christian Eberl², Florian Döring², Hans-Ulrich Krebs², Michael Sprung³, Tim Salditt¹

¹ Institut für Röntgenphysik, Uni Göttingen ² Institut für Materialphysik, Uni Göttingen ³ DESY Photon Science, Hamburg

Thanks to:

Aike Ruhlandt¹, Sarah Hoffmann¹, Anna-Lena Robisch¹, Felix Schlenkrich², Alexey Zozulya³, Thomas Hoinkes⁴, Arno Rauschenbeutel⁴

⁴ Vienna Center for Quantum Chemistry and Technology

Former group members: Matthias Bartels¹, Sven-Philip Krüger¹, Tobias Liese²

Technical support: Bastian Hartmann¹, Jan Goeman¹, Volker Radisch²

Funding: Deutsche Forschungsgemeinschaft, SFB 755

BMBF, Grants No. 05KS7MGA, 05K10MGA

C. Eberl et al

Poster on MZP fabrication:

Poster #4 on Tuesday's session