

Markus Osterhoff:

coherence in stationary Stochastic Optical Fields

coherence M. Osterho Introduction Focus

Coherenc

3D-Focus

Summary

Coherence in stationary stochastic optical fields

Markus Osterhoff ^{a,b}, Christian Morawe ^b, Tim Salditt ^a

^a Institut für Röntgenphysik, University of Göttingen; ^b Multilayer Group, ESRF, Grenoble

SciSoft Coffee Meeting - March, 18th 2010

Outline

coherence

- Introduction Focus Coherence 3D-Focus
- 1 Introduction & Experimental Setup
- **2** Simulated Focus Fields
- **3** Coherence Properties & Filtering

4 3D-Focus

5 Summary & Outlook

Coherent Imaging

Introduction

Focus

- Coherence
- 3D-Focus
- Summary

Coherent Diffractive Imaging (CDI)

biological samples:

weak scattering is stronger than absorption

• reconstruction with resolutions of some ten nanometers possible

• index of refraction for hard x-rays:

 $n = 1 - \delta + i\beta$

- $\delta \lesssim 10^{-4}$ phase shift
- $\beta \lesssim 10^{-6}$ absorption

Coherent Imaging

Introduction

Coherent Diffractive Imaging (CDI)

• biological samples:

weak scattering is stronger than absorption

• reconstruction with resolutions of some ten nanometers possible

simulated sample phase optical micrograph (in-situ micr.) reconstructed phase

[†]K. Giewekemeyer *et al*, NJP (2010, accepted)

Coherent Imaging

Introduction

Focus

- Coherence
- 3D-Focus
- Summary

Coherent Diffractive Imaging (CDI)

biological samples:

weak scattering is stronger than absorption

• reconstruction with resolutions of some ten nanometers possible

- highly coherent illumination needed
- beam shaping optics needed
- knowledge of the illumination function improves reconstruction results

PETRA III

coherence

- M. Osterhoff
- Introduction
- Focus
- Coherence
- 3D-Focus
- Summary

- Coherent Imaging at the nanoscale needs high flux of coherent photons
- $\rightarrow\,$ need of 3^{rd} generation synchrotron

PETRA III

coherence

- M. Osterhoff
- Introduction
- Focus
- Coherence
- 3D-Focus
- Summary

- Coherent Imaging at the nanoscale needs high flux of coherent photons
- $\rightarrow\,$ need of 3^{rd} generation synchrotron
 - PETRA III @ Hasylab (DESY, Germany)
 - in october 2009, horizontal emittance of 1 nm rad was reached[†]
 - first beamlines can be used

coherence

P10 – Coherence Beamline

M. Osterhof Introduction Focus

Coherence 3D-Focus

Summary

Dedicated setup for waveguide-based coherent imaging operated by IRP @ P10, PETRA III^ $\!\!\!$

mirrors are being aligned *right now*! - this data: from ESRF, ID22NI

[†]S. Kalbfleisch, M. Osterhoff *et al*, SRI proceedings (2009, accepted)

The mirrors

coherence

- M. Osterhoff
- Introduction
- Focus
- Coherence
- 3D-Focus
- Summary

- Two total reflection mirrors in a KB scheme
- Mirror overview:

	JTEC	WinlightX
focusing	horizontal	vertical
distance from source	88.5 m	88.4 m
distance to focus	200 mm	300 mm
angle of incidence	4 mrad	3.8 mrad
active length	pprox 94	l mm
active length material	pprox 94 sil	l mm ica
active length material coating	pprox 94 sil palla	l mm ica dium
active length material coating figure error (P-V)	≈ 92 sil palla 4.8 nm	ł mm ica dium

 Following calculations were carried out for the JTEC mirror @ 12.4 keV (1 Å)

The mirrors

coherence

- M. Osterhoff
- Introduction
- Focus
- Coherence
- 3D-Focus
- Summary

- Two total reflection mirrors in a KB scheme
- Mirror overview:

	JTEC	WinlightX
focusing	horizontal	vertical
distance from source	88.5 m	88.4 m
distance to focus	200 mm	300 mm
angle of incidence	4 mrad	3.8 mrad
active length	pprox 94 mm	
material	silica	
coating	palladium	
figure error (P-V)	4.8 nm	
(after coating)		

 Following calculations were carried out for the JTEC mirror @ 12.4 keV (1 Å)

Figure error: perfect mirror

Figure error: polished mirror

Figure error: coated mirror

Figure error: coated mirror

Figure error

- coherence
- M. Osterhof
- Introduction
- Focus
- Coherence
- 3D-Focus
- Summary

- Figure error before/after coating was measured by Frank Siewert @ HZB-Bessy II, Berlin
- "The Nanometer Optical Component Measuring Machine"
- measured figure error of 4.8 nm (p-v) is very low;
- NOM's reproducibility is \pm 1.2 nm (p-v)
- error before coating was pprox 3 nm (p-v)
- possible problems: alignment, world-travelling mirror

- Mirror performance was calculated by waveoptical methods
- Geometry is defined by s_1, s_2, Θ
- wavelength λ , mirror's length L and $n = 1 \delta + i\beta$

- Phase-ray-tracing from a point-source: $E(x_1) = E_0 \frac{e^{ikr}}{\sqrt{r}}$
- Fresnel's coefficient: $r_{\sigma} = \frac{\sin(\theta \theta')}{\sin(\theta + \theta')}$
- complex θ' , *n* include phase shifts

• Kirchhoff's integral of diffraction:

$$E(x_2) = rac{-i}{\sqrt{\lambda}} \int \mathrm{d}x_1 \ E(x_1) rac{e^{ikr}}{\sqrt{r}}$$

- 1d-detector
- 2d-detector (in propagation direction)

 include mirror's real surface profile as determined by NOM / metrology

coherence

- M. Osterhof
- Introduction

- Coherence
- 3D-Focus
- Summary

- We need the *phase* on the mirror
- $\lambda \approx 10^{-10} \,\mathrm{m}$ $\mathrm{s}_1 \approx 10^2 \,\mathrm{m}$
- 12 orders of magnitude!
- hardware precision (double): 64 bits, 48 are significant
- corresponding to 15 decimal places

coherence

- M. Osterhof
- Introduction

- Coherence
- 3D-Focus
- Summary

- We need the *phase* on the mirror
- $\lambda \approx 10^{-10} \,\mathrm{m}$ s₁ $\approx 10^{2} \,\mathrm{m}$
- 12 orders of magnitude!
- hardware precision (double): 64 bits, 48 are significant
- corresponding to 15 decimal places
- calculation of $r = \sqrt{\Delta x^2 + \Delta y^2}$ even worse!

coherence

- M. Osterhof
- Introduction

- Coherence
- SD-Focus
- Summary

- We need the *phase* on the mirror
- $\lambda \approx 10^{-10} \,\mathrm{m}$ $\mathrm{s}_1 \approx 10^2 \,\mathrm{m}$
- 12 orders of magnitude!
- hardware precision (double): 64 bits, 48 are significant
- corresponding to 15 decimal places
- calculation of $r = \sqrt{\Delta x^2 + \Delta y^2}$ even worse!
- *gmp* gnu multiple precision:
- \rightarrow phase is calculated in software 256 bits

coherence

- M. Osterhof
- Introduction

- Coherence
- c

- We need the *phase* on the mirror
- $\lambda \approx 10^{-10} \,\mathrm{m}$ $\mathrm{s}_1 \approx 10^2 \,\mathrm{m}$
- 12 orders of magnitude!
- hardware precision (double): 64 bits, 48 are significant
- corresponding to 15 decimal places
- calculation of $r = \sqrt{\Delta x^2 + \Delta y^2}$ even worse!
- gmp gnu multiple precision:
- $\rightarrow\,$ phase is calculated in software 256 bits

coherence

- M. Osterhof
- Introduction
- Focus
- Coherence
- 3D-Focus
- Summary

- Kirchhoff's integral of diffraction:
- hardware precision good enough for phase

coherence

- M. Osterhof
- Introduction
- Focus
- Coherence
- 3D-Focus
- Summary

- Kirchhoff's integral of diffraction:
- hardware precision good enough for phase

coherence

- M. Osterhof
- Introduction

- Coherenc
- 3D-Focus
- Summary

- Fresnel's coefficient Snell's law
- C++ has no complex acos

coherence

- M. Osterhof
- Introduction

- Coherence
- 3D-Focus
- Summary

- Fresnel's coefficient Snell's law
- C++ has no complex acos
- but with complex *log* it is possible...

$$\cos^{-1}(z) = -i\log\left(z + i\sqrt{1-z^2}\right)$$

coherence

- M. Osterhof
- Introduction

- Coherence
- 3D-Focus
- Summary

- Fresnel's coefficient Snell's law
- C++ has no complex acos
- but with complex *log* it is possible...

$$\cos^{-1}(z) = -i\log\left(z + i\sqrt{1-z^2}\right)$$

Focus

Performance Tip 1:

• use your hardware!

- SSE extensions of modern microchips allow parallel execution of simple calculations:
- SIMD Single Instruction, Multiple Data

Focus

Performance Tip 1:

use your hardware!

- SSE extensions of modern microchips allow parallel execution of simple calculations:
- SIMD Single Instruction, Multiple Data
- performance gain: 10 % (would be higher if we could use single precision...)

Focus

Performance Tip 1:

use your hardware!

- SSE extensions of modern microchips allow parallel execution of simple calculations:
- SIMD Single Instruction, Multiple Data
- performance gain: 10 % (would be higher if we could use single precision...)

coherence

- M. Osterhof
- Introduction

Focus

- Coherence
- 3D-Focus
- Summary

Performance Tip 2:

- use your hardware!
- multi-core, multi-CPU:
- run outer loop (here: 2D-detector) in parallel with threads
- openMP does everything with one additional line...

coherence

M. Osterhof

Introduction

Focus

Coherence

3D-Focus

Summary

Performance Tip 2:

- use your hardware!
- multi-core, multi-CPU:
- run outer loop (here: 2D-detector) in parallel with threads
- openMP does everything with one additional line...
- performance gain: scales linearly with number of cores

coherence

M. Osterhof

Introduction

Focus

Coherence

3D-Focus

Summary

Performance Tip 2:

- use your hardware!
- multi-core, multi-CPU:
- run outer loop (here: 2D-detector) in parallel with threads
- openMP does everything with one additional line...
- performance gain: scales linearly with number of cores

coherence M. Osterhoff

Focus

Performance Tip 3:

• use your hardware!

- multi-node:
- run outer loop in parallel on multiple computers
- MPI for communication & synchronization

coherence M. Osterhoff

Introduction

Focus

Coherence 3D-Focus

Summary

Performance Tip 3:

• use your hardware!

- multi-node:
- run outer loop in parallel on multiple computers
- MPI for communication & synchronization
- performance gain: too bad compared to coding costs...

coherence M. Osterhoff

Introduction

Focus

Coherence 3D-Focus

Summary

Performance Tip 3:

• use your hardware!

- multi-node:
- run outer loop in parallel on multiple computers
- MPI for communication & synchronization
- performance gain: too bad compared to coding costs...

coherence

- M. Osterhof
- Introduction

Focus

- Coherence
- 3D-Focus
- Summary

- Performance Tip 4:
 - use your software!

• code developed on Mandriva 2009 with gcc 4.3

coherence

- M. Osterhof
- Introduction

- Coherence
- 3D-Focus
- Summary

- Performance Tip 4:
 - use your software!

- code developed on Mandriva 2009 with gcc 4.3
- after porting to CentOS 5.3 with gcc 4.1:

coherence

M. Osterhof

Introduction

Focus

Coherence

3D-Focus

Summary

Performance Tip 4:

• use your software!

- code developed on Mandriva 2009 with gcc 4.3
- after porting to CentOS 5.3 with gcc 4.1:
- run-time increased to 400 %!

coherence

Introduction

- Coherence
- Summary

- Performance Tip 4:
 - use your software!

- code developed on Mandriva 2009 with gcc 4.3
- after porting to CentOS 5.3 with gcc 4.1:
- run-time increased to 400 %!
- problem: library functions fmod, sin, cos

coherence

Introduction

- Coherence
- Summary

- Performance Tip 4:
 - use your software!

- code developed on Mandriva 2009 with gcc 4.3
- after porting to CentOS 5.3 with gcc 4.1:
- run-time increased to 400 %!
- problem: library functions fmod, sin, cos
- solution: manually compiled gcc 4.3

coherence

Introduction

- Coherence
- Summary

- Performance Tip 4:
 - use your software!

- code developed on Mandriva 2009 with gcc 4.3
- after porting to CentOS 5.3 with gcc 4.1:
- run-time increased to 400 %!
- problem: library functions fmod, sin, cos
- solution: manually compiled gcc 4.3

Simulated fields

coherence

M. Osterhoff

Introduction

Focus

- Coherence
- 3D-Focus
- Summary

calculations were carried out for

- ideal,
- polished (with coating assumed for index of refraction),
- coated mirror
- point source
- PETRA III source

Simulated fields

coherence

M. Osterhoff

Introduction

Focus

- Coherence
- 3D-Focus
- Summary

calculations were carried out for

- ideal,
- polished (with coating assumed for index of refraction),
- coated mirror
- point source
- PETRA III source

Focus fields – point source + ideal mirror

coherence

M. Osterho

Introduction

Focus

Coherenc

3D-Focus

Summary

perfect mirror peak-to-valley: 0.0 nm

Focus fields – point source + ideal mirror

coherence

Focus

Focus fields – point source + ideal mirror

Focus fields – point source + ideal mirror

Focus

Focus fields – point source + polished mirror

Focus

Focus fields – point source + coated mirror

Focus fields – long

Focus fields – extended source + coated mirror

coherence

M. Osterhof

Introduction

Focus

Coherence

3D-Focus

Summary

• Source size: 36 μ m (1 σ)

Focus fields – extended source + coated mirror

coherence

Introduction

Focus

Coherence 3D-Focus

Summary

Focus fields – long

coherence

Coherence in the focal region

Coherence

4/

21

(E. Wolf: Theory of Coherence and Polarization of Light, Fig. 3.2)

coherence

- M. Osterhof
- Introductior

Focus

Coherence 3D-Focus • complex degree of coherence:

$$\gamma = \frac{\langle U_1 U_2^* \rangle}{\sqrt{I_1 I_2}}$$

• Nature: time-average

coherence

- M. Osterhof
- Introduction

Focus

Coherence 3D-Focus

Summary

• complex degree of coherence:

$$\gamma = \frac{\langle U_1 U_2^* \rangle}{\sqrt{I_1 I_2}}$$

• Nature: time-average

• Simulation: ensemble-average

$$U(x) = \sum_{n} w_{n} c_{n}^{\mathsf{rand}} u_{n}(x)$$

coherence

- M. Osterhof
- Introduction

Focus

- Coherence 3D-Focus
- Summary

• complex degree of coherence:

$$\gamma = \frac{\langle U_1 U_2^* \rangle}{\sqrt{I_1 I_2}}$$

- Nature: time-average
- Simulation: ensemble-average

$$U(x) = \sum_{n} w_{n} c_{n}^{\mathsf{rand}} u_{n}(x)$$

coherence M. Osterho

- Introductio
- Focus
- Coherence 3D-Focus Summary

$$U(x) = \sum_{n} w_{n} c_{n}^{\mathsf{rand}} u_{n}(x)$$

- *w_n*: weighting coefficients (Gaussian envelope for point-sources)
- c_n^{rand} : random complex coefficients for superposition
- $u_n(x)$: pre-calculated field distributions for *n*th source

Coherence in the focal region – sketch

Coherence in the focal region - coated mirror

Coherence in the focal region - coated mirror

- corresponding to mirror's aperture

Coherent Flux

- M. Osterho
- Introductio
- Focus
- Coherence 3D-Focus Summary

• relation between coherence and intensity?

Coherent Flux

Coherence 3D-Focus Summary

• relation between coherence and intensity?

P10 JTEC focus with slits @ 1.00

Coherent Flux

slits in front of the mirror:

less intensity

slits in front of the mirror:

- less intensity
- smaller NA \rightarrow larger spot

slits in front of the mirror:

- less intensity
- smaller NA \rightarrow larger spot
- but only coherent part of the beam

slits in front of the mirror:

- less intensity
- smaller NA \rightarrow larger spot
- but only coherent part of the beam

- integrated flux: $\int I(y) dy$
- coherent flux: integral where $\gamma > 0.5$

3D-Focus

coherence

- M. Osterho
- Introductior
- Focus
- Coherence
- 3D-Focus
- Summary

KB-assumption: two perpendicular foci can be multipliedMatlab:

imagesc(focus1 * transpose(focus2))

• movie: A Flight along the Optical Axis

Summary

coherence M. Osterho

- Introduci
- Focus
- Coherence
- 3D-Focus
- Summary

- figure error below projected wavelength is not critical
- coherence properties can be enhanced by slits
- optimal ratio coherence / losses wanted

coherence

- M. Osterhof
- Introductio
- Focus
- Coherence
- 3D-Focus
- Summary

- generalization of the source
 - wavelength distribution
 - misalignements, vibrations
 - $\rightarrow~$ estimate effect of "beamline errors"
 - emittance
 - \rightarrow calculate gain
 - undulator theory
 - $\rightarrow\,$ new insight into coherence properties
- generalization from Mirror to Multilayer Mirror
 - · development of waveoptical methods in progress
 - estimate effect of inner roughness & errors
 - $\rightarrow\,$ increase of Numerical Aperture
 - $\rightarrow\,$ increase of coherence properties?

coherence

- M. Osterhof
- Introductio
- Focus
- Coherence
- 3D-Focus
- Summary

- generalization of the source
 - wavelength distribution
 - misalignements, vibrations
 - $\rightarrow\,$ estimate effect of "beamline errors"
 - emittance
 - $\rightarrow~$ calculate gain
 - undulator theory
 - $\rightarrow\,$ new insight into coherence properties
- generalization from Mirror to Multilayer Mirror
 - · development of waveoptical methods in progress
 - estimate effect of inner roughness & errors
 - $\rightarrow\,$ increase of Numerical Aperture
 - $\rightarrow\,$ increase of coherence properties?

Acknowledgements

coherence

M. Osterhol

- Introductio
- Focus
- Coherence
- 3D-Focus
- Summary

This transparency is dedicated to...

- my supervisors & colleagues
 - at the ESRF, Grenoble Christian Morawe
 - at the University of Göttingen Tim Salditt
- Frank Siewert for the surface analysis
- Hanfein Yan (SNLS-II) and Jean-Pierre Guigay & Claudio Ferrero (ESRF) for discussion

Thank you for your attention!