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e biological samples:
weak scattering is stronger than absorption

Introduction

e reconstruction with resolutions of some
ten nanometers possible

index of refraction for hard x-rays:
n=1—-0+1i0

§ <107% - phase shift
£ < 107% — absorption
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e biological samples:
weak scattering is stronger than absorption

Introduction

e reconstruction with resolutions of some
ten nanometers possible

simulated sample phase  optical micrograph (in-situ micr.)  reconstructed phase

500 nm

sample

" el detector
pre-focusing optics _in-situ :
synchrotron v (crossed KB mirrors)  waveguide microscope

beam v v y
Y [ | == O l

~0.1 mm ~150nm  10-100 nm

Z4 Zy

K. Giewekemeyer et al, NJP (2010, accepted)
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Introduction

Coherent Imaging

Coherent Diffractive Imaging (CDI)

biological samples:
weak scattering is stronger than absorption

reconstruction with resolutions of some
ten nanometers possible

highly coherent illumination needed
beam shaping optics needed

knowledge of the illumination function
improves reconstruction results
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Introduction

— need of 3" generation synchrotron
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Coherent Imaging at the nanoscale needs

M. Osterhoff
high flux of coherent photons

Introduction

— need of 3" generation synchrotron

PETRA IIl @ Hasylab (DESY, Germany)

e in october 2009, horizontal emittance of 1 nm rad

was reached’

e first beamlines can be used

Thttp://petra3.desy.de



P10 — Coherence Beamline

coherence Dedicated setup for waveguide-based coherent imaging
M. Osterhoff operated by IRP @ P10, PETRA |||T

Introduction
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source mirror
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detector signal reconstruction

specimen

mirrors are being aligned right now!
— this data: from ESRF, ID22NI

'S. Kalbfleisch, M. Osterhoff et al, SRI proceedings (2009, accepted)
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e Mirror overview:

Introduction

focusing

e Two total reflection mirrors in a KB scheme

JTEC WinlightX
horizontal vertical

distance from source
distance to focus
angle of incidence

88.5 m 88.4 m
200 mm 300 mm
4 mrad 3.8 mrad

(after coating)

active length ~ 94 mm
material silica
coating palladium

figure error (P-V) 4.8 nm
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e Two total reflection mirrors in a KB scheme
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e Mirror overview:

iniroduction JTEC  WinlightX
focusing horizontal  vertical
distance from source  88.5 m 88.4 m
distance to focus 200 mm 300 mm
angle of incidence 4 mrad 3.8 mrad
active length ~ 94 mm
material silica
coating palladium

figure error (P-V) 4.8 nm

(after coating)

e Following calculations were carried out for
the JTEC mirror @ 12.4 keV (1 A)
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mirror surface [nm]

0 perfect mirror

-40 -30 -20 -10 0 10 20 30 40

position on mirror surface [mm]
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perfect mirror — ——

before coating =
-40 -30 -20 -10 0 10 20 30 40

position on mirror surface [mm]
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erfect mirror  s——
before coating  —

after coating =
-40 -30 -20 -10 0 10 20 30 40

position on mirror surface [mm]
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mirror surface [nm]

erfect mirror  s——
before coating  —

after coating =
-40 -30 -20 -10 0 10 20 30 40

position on mirror surface [mm]

e roughness: o = 0.1 nm — not significant
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Introduction Figure error before/after coating was measured by
Frank Siewert @ HZB—Bessy Il, Berlin
e “The Nanometer Optical Component Measuring Machine’

e measured figure error of 4.8 nm (p-v) is very low;
e NOM's reproducibility is & 1.2 nm (p-v)

e error before coating was ~ 3 nm (p-v)

e possible problems: alignment, world-travelling mirror



Simulation

coherence

M. Osterhoff

=

sync;rotron /

undulator

e Mirror performance was calculated by waveoptical methods
e Geometry is defined by s1, s, ©
e wavelength A\, mirror's length Land n=1—-6+if3
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sync;rotron /

undulator

e Phase-ray—tracing from a point-source: E(x1) = Eof;

sin(6—6)
sin(0+4-07)

e complex ', n include phase shifts

e Fresnel's coefficient: r, =
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—— //V

synchrotron /

e Kirchhoff's integral of diffraction:

e 1ld-detector

e 2d-detector (in propagation direction)
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—— //V

synchrotron /
undulator

e include mirror's real surface profile
as determined by NOM / metrology



Simulation

initialize geometrical & physical I:

choose random point on mirror surface |<—

calculate amplitude + phase

coherence

rhoff

apply Fresnel's coefficient of reflection I(—

solve Kirchhoff's integral of diffraction |(—

output of intensity + phase

loop over point
source positions
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loop over point
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itialize geometrical & physical <

choose random point on mirror surface

coherence

-

it

apply Fresnel's coefficient of reflection

-

"

solve Kirchhoff's integral of diffraction |(—

output of intensity + phase

Ioop over point

source positions
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M. Osterhoff We need the phase on the mirror
e \x 10710y s~ 102m

e 12 orders of magnitude!

e hardware precision (double): 64 bits, 48 are significant

e corresponding to 15 decimal places

e calculation of r = \/Ax2 + Ay? even worse!

e gmp — gnu multiple precision:

— phase is calculated in software — 256 bits
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Focus Fields — behind the scenes
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e Kirchhoff's integral of diffraction:

e hardware precision good enough for phase
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initialize geometrical & physical I:

choose random point on mirror surface |(—

calculate amplitude + phase

solve Kirchhoff's integral of diffraction |(—

output of intensity + phase

Ioop over point

source positions
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e C+-+ has no complex acos
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e Fresnel’'s coefficient — Snell’s law

M. Osterhoff

e C+-+ has no complex acos

e but with complex log it is possible. . .

cosL(z) = —ilog (z Fivie z2)
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g%, Simulation

initialize geometrical & physical I:

choose random point on mirror surface |(—

calculate amplitude + phase

apply Fresnel's coefficient of reflection I(—

output of intensity + phase

Ioop over point

source positions
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e use your hardware!

128 bit SSE register

| float I float I float I float | in one step:
+ -
!
128 bit SSE register
sqrt

| double I double |
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e use your hardware!

128 bit SSE register

| float I float I float I float | in one step:

+ -

* 1

128 bit SSE register

sqrt

| double I double |

e SSE extensions of modern microchips allow parallel
execution of simple calculations:

e SIMD - Single Instruction, Multiple Data
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Performance Tip 1:
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e use your hardware!

128 bit SSE register

| float I float I float I float | in one step:

+ -

* 1

128 bit SSE register

sqrt

| double I double |

e SSE extensions of modern microchips allow parallel
execution of simple calculations:

e SIMD - Single Instruction, Multiple Data

e performance gain: 10 %

(would be higher if we could use single precision. . .)
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B e use your hardware!

e multi-core, multi-CPU:

e run outer loop (here: 2D-detector) in parallel with threads

e openMP does everything with one additional line. ..
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B Performance Tip 2:
B e use your hardware!

e multi-core, multi-CPU:

e run outer loop (here: 2D-detector) in parallel with threads

e openMP does everything with one additional line. ..

e performance gain: scales linearly with number of cores
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Performance Tip 3:
e use your hardware!
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(T
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e use your hardware!

‘E,

N
0EEE

e multi-node:
e run outer loop in parallel on multiple computers

e MPI for communication & synchronization
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Performance Tip 3:
e use your hardware!

‘E,

N
0EEE

multi-node:
run outer loop in parallel on multiple computers

M. Osterhoff

MPI for communication & synchronization

e performance gain: too bad compared to coding costs. ..
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e use your software!
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e use your software!

e code developed on Mandriva 2009 with gcc 4.3
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e after porting to CentOS 5.3 with gcc 4.1:
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e use your software!

code developed on Mandriva 2009 with gcc 4.3

after porting to CentOS 5.3 with gcc 4.1:

e run-time increased to 400 %!

problem: library functions fmod, sin, cos
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Performance Tip 4:

M. Osterhoff

e use your software!

e code developed on Mandriva 2009 with gcc 4.3

e after porting to CentOS 5.3 with gcc 4.1:

e run-time increased to 400 %!

e problem: library functions fmod, sin, cos

e solution: manually compiled gcc 4.3
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calculations were carried out for
e ideal,
e polished (with coating assumed for index of refraction),

e coated mirror
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calculations were carried out for
e ideal,
e polished (with coating assumed for index of refraction),

e coated mirror

e point source
e PETRA Il source
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perfect mirror
peak-to-valley: 0.0 nm

deviation [nm]
oM
T

-40
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mirror coordinate [mm

40
]
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perfect mirror surface height deviation profile

sterhoff peak-to-valley: 0.0 nm

I 1 I I 1
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perfect mirror surface height deviation profile
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focus-width:
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mirror coordinate [mm]

deviation [nm]
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intensity pattern in focal region
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perfect mirror surface height deviation profile

sterhoff peak-to-valley: 0.0 nm

focus-width: 54 nm

I 1 I I 1
-20 0 20 40

mirror coordinate [mm]

deviation [nm]
oM
T
L

N
S

intensity pattern in focal region

0.8

0.6

0.4

normalized intensity

0.2

0.0
-400 -200 0 200 400

optical axis [um]



Focus fields — point source + polished mirror

coherence
surface height deviation profile

polished mirror

M. Osterhoff peak-to-valley: 3.1 nm

focus-width: 54 nm

-40 -20 0 20 40

mirror coordinate [mm]

deviation [nm]
oM
<
I I

intensity pattern in focal region

0.8

0.6

e,
oso®

0.4

normalized intensity

0.2

0.0
-400 -200 0 200 400

optical axis [um]
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coated mirror surface height deviation profile

Ml Osaitifis peak-to-valley: 4.8 nm

focus-width: 54 nm

| ' | | '
-40 -20 0 20 40

mirror coordinate [mm]

deviation [nm]
oM
|
|

intensity pattern in focal region

0.8

0.6

0.4

normalized intensity

0.2

0.0
-400 -200 o] 200 400
optical axis [um]
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Focus fields — extended source + coated mirror
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e Source size: 36 um (1o)



Focus fields — extended source + coated mirror
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e Source size: 36 um (1o)

M. Osterhoff

1.5
| - i

-1500 -1000 - 1000 1500

optlcal axis [pm]

normalized intensity [a.u.]
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e complex degree of coherence:
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(U(r, t)U* (R, t + 7))
(U7, t)U*(7, £))(U(%, t) U*(72, t))

Coherence

Wi, b, T) = 7

I
201 + WKy
2j() 21
201 — VoA
§
(a) coherent superposition (b) partially coherent superposition (c) incoherent superposition
=0 O<<D (v =0

(E. Wolf: Theory of Coherence and Polarization of Light, Fig. 3.2)
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e complex degree of coherence:

Coherence
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e complex degree of coherence:
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Coherence

e Nature: time-average



Coherence in the focal region
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e complex degree of coherence:

M. Osterhoff

Coherence

e Nature: time-average

e Simulation: ensemble-average

U(x) = Z W,,C,';and un(x)
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Coherence U(X) = Z WnC,';and Un(X)
n

e w,: weighting coefficients (Gaussian envelope for
point-sources)

. Cgand: random complex coefficients for superposition

e u,(x): pre-calculated field distributions for nth source
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Coherence

0

optcal axis [um]




Coherence in the focal region — coated mirror

coherence Degree of Coherence (coated mirror, 12.4 keV) - FIT

1 T T T T
O simulation data
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Degree of Coherence (coated mirror, 12.4 keV) - FIT

1 T T T T
O simulation data
— Jsin(kx)/kx]

0.8 B
=
S

o 06 B
[
=
Q
Q
o

© 0.4 8
j
[=2]
D
o

0.2r B

G L 1 L 1 L 1
0 50 100 150 200 250

distance between two points [nm]

e Coherence length is ~ 54 nm
— corresponding to mirror's aperture
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e relation between coherence and intensity?

P10 JTEC focus with slits @ 1.00

T T T
coherence: 68 nm coherence —S—
spotsize: 160 nm intensity —@—
1.00 Y 4 1.00
Coherence K
B
e
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S 075 | {0.75
) - @
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= e @
81 5
< B g
2 . 3
Lol 5
g 050 | 050 ©
9 . @
£ . g
©
o
£ . g
o B o
2 - G
e
-
e —
0.25 . 0.25
e
e
e
.
e
.
o
-
0.00 0.00
0 100 200 300 400

distance from optical axis [nm]



Coherent Flux

coherence P10 JTEC focus with siits @ 1.00

coherence: &8 nm coherence

& 160 =
Posize; o 0 intensity 1o

Coherence

normalized intensity [au]
degree of coherence

100 200 300 400
distance from optical axis [nm]

slits in front of the mirror:



coherence P10 JTEC focus with siits @ 1.00

conerence: [ 68 im conerence —o—
Sposice 160 am
potsize: | intensity —8— | oo
~07
3 050 050
Coherence 2
E
0.25 0.2
. 0.00
0 100 200 300 400

distance from optical axis [nm]

slits in front of the mirror:

e less intensity

degree of coherence



coherence P10 JTEC focus with siits @ 1.00

conerence: [ 68 im conerence —o—
Sposice 160 am
potsize: | intensity —8— | oo
~07
3 050 050
Coherence 2
E
0.25 0.2
. 0.00
0 100 200 300 400

distance from optical axis [nm]

slits in front of the mirror:
e less intensity

e smaller NA — larger spot

degree of coherence



Coherent Flux

coherence P10 JTEC focus with siits @ 1.00

coherence: &8 nm coherence
160 n

-
1755 intensity —®— | o

Coherence

degree of coherence

distance from optical axis [nm]

slits in front of the mirror:
e less intensity
e smaller NA — larger spot

e but only coherent part of the beam
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P10 JTEC focus with slits @ 1.00

coherence: 68 nm coherence —G—
spotsl\z(% 160 nm intensity —@—

Coherence

0.75

0.50

normalized intensity [au]
degree of coherence

0.25

0.00

distance from optical axis [nm]
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coherence:

spotsize:
o6

normalized intensity [au]

0.75

0.50

0.25

0.00

P10 JTEC focus with slits @ 0.60

distance from optical axis [nm]

coherence —&—
intensity —@— 1

0.75

0.50

0.25

0.00
400

degree of coherence



Flux: Slits @ 0.40
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P10 JTEC focus with slits @ 0.40

coherence: 192 hm coherence —G—
spotsize: 180 nm i i
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Slits @ 0.25

coherence
P10 JTEC focus with slits @ 0.25
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Coherent Flux: Slits @ 0.10
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P10 JTEC focus with slits @ 0.10

coherence: coherence —G—
spotsl\z(% 484 nm intensity —@—

Coherence

0.75 0.75

0.50 0.50

normalized intensity [au]
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0.00
0 100 200 300 400
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coherence P10 JTEC focus with siits @ 0.40

conerence: 152 fm conerence —o—
Sposice 180 am
potsize: intensity —8— | oo
~07
g
3 050 0s0 &
Coherence 2 8
.
0.25 & 025
0.00
400

distance from optical axis [nm]

e integrated flux: [ /(y)dy

e coherent flux: integral where v > 0.5
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Coherence

>ff

normalized intensity
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Coherence

>ff

normalized intensity
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Coherence

normalized intensity

0.8

0.6

0.4

0.2

geométrical accep‘tance
integrated flux W 4
coherent flux ®

0.2 0.4 0.6 0.8 1
effective mirror length



v i) 3D-Focus
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KB-assumption: two perpendicular foci can be multiplied
e Matlab:

imagesc( focusl # transpose(focus2) )

e movie: A Flight along the Optical Axis



Summary
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e figure error below projected wavelength is not critical

Summary

e coherence properties can be enhanced by slits

e optimal ratio coherence / losses wanted
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estimate effect of “beamline errors”
emittance
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undulator theory

new insight into coherence properties

Summary
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M. @i e generalization of the source
wavelength distribution
misalignements, vibrations

estimate effect of “beamline errors”
emittance

calculate gain

undulator theory

new insight into coherence properties

Summary

l.l.l«..

e generalization from Mirror to Multilayer Mirror

e development of waveoptical methods in progress
e estimate effect of inner roughness & errors

— increase of Numerical Aperture

— increase of coherence properties?
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