SFB **7**55

Wave-optical simulations of

focusing x-ray multilayer mirrors

M. Osterhoff^(1,2), Ch. Morawe⁽¹⁾, C. Ferrero⁽¹⁾, J.-P. Guigay⁽¹⁾

further funding: BMBF: 05KS7MGA, 05K10MGA Helmholtz Association: VI-203, VI-403 EU FP7: NanoFOX

⁽¹⁾ European Synchrotron Radiation Facility, Grenoble ⁽²⁾ Institut für Röntgenphysik, Georg-August-Universität Göttingen

Focusing down to the nano metre

- X-rays: wavelengths below the nano metre scale - but usually the numerical aperture is very small - focus sizes: typically a few hundred nanometres, world records:
- 20 to 50 nm in 2D (different techniques) 7 nm in 1D [1]

What we need:

Takagi-Taupin theory, fundamentals:

- incoming wave: ψ_0
- reflected wave: ψ_1

- Fourier series of susceptibility: x_0, x_{-1}, x_{+1}

In curved geometry:

- finite differences on regular grid spatially dependant coefficients α, β describe geometry
- γ -terms due to cylindrical waves local angle of incidence $\vartheta(s,t)$

 $(\alpha^2 \partial_s + \beta^2 \partial_t) \psi_0 = i (u_0 \psi_0 + u_1 \psi_1) - \gamma^+ \psi_0,$ $(\alpha^2 \partial_s - \beta^2 \partial_t) \psi_1 = i (u_0 \psi_1 + u_{\bar{1}} \psi_0) + \gamma^- \psi_1$

 $\alpha^2 = \frac{c^2 - s^2}{t^2 - s^2}, \ \beta^2 = \frac{t^2 - c^2}{t^2 - s^2}$ $2\gamma^{\pm} = \pm \frac{1}{t+s}, \ u_h = k\chi_h/2$

"large" numerical aperture, e.g. ≥ 0.01 - high reflectivity

(One possible) solution:

multilayer mirrors, as built at the ESRF (ML lab, Christian Morawe) [2]

Focusing multilayer mirrors

- alternating layers of high optical contrast
- typical layer thicknesses: 1 to 4 nanometres
- typical layers: $(W / B_4C)_{25...100}$
- typical angles of incidence: 5 to 15 milliradians

Elliptical shapes

- total reflection mirrors: single ellipse
- multilayers: (nearly) confocal ellipses
- convenient analytical description: elliptical coordinates

tion ---

0.01 1.00

1.80

2.4000×10-4

9.1349×10-8 0.441426 0.000381

1.0594

-0.931250

-0.931218

0.002777

3.03 s

0.07 s 30.7 MB

tt-int \$

Elliptical Takagi-Taupin

- two wave-fields (incoming and reflected)
- Fourier series of susceptibility
- cylindrical waves, slowly varying envelopes, elliptical coordinates

Modified Bragg equation

Modified Bragg equation:

- local correction
- increased layer thickness
- "anti-phase shift" of reflected wave
- motivated by geometrical considerations, now: wave-optical confidence

 $(\alpha^2 \partial_s + \beta^2 \partial_t) \psi_0 = i (+ u_0 \psi_0 + u_{\bar{1}} \psi_1) - \gamma^+ \psi_0,$ $(\alpha'^2 \partial_s - \beta'^2 \partial_t) \psi_1 = i (- u_0 \psi_1 + u_1 \psi_0) + \gamma'^- \psi_1,$ $\alpha'^2 = \alpha^2$, $\beta'^2 = \beta^2 (1 - 2\delta / \sin^2 \theta)$.

 $\Delta \theta = 400 \,\mu rad$

Elliptical TT: reflected intensity

- refraction occurs inside "averaged" medium

- phases of reflected waves do not match
- modified layer thickness Λ :

$\Lambda^{\rm mB} = \lambda/2 \sqrt{n^2 - \cos^2 \theta}$ [2]

50,00

t = const

s increasing

reaches maximum reflection

photon energy: 12.4 keV source distance: 50.0 m

focal length: 100 mm Bragg angle: 10.0 mrad

ML structure: $(W / B_AC)_{100}$

X-ray MultiLayer Simulations

ostorbof@pagetics01	la	/tt_int \$ (actum ch	illumination inform
osternor@pcoptics01 /	~/g	/tt=int \$./setup.sn	colculated by
optical constants		nformation	calculated by :
material 1 · W			vidth ·
material 2	•	N P/C	intonsity .
	:	12 4000 kov	number ·
2	:	1 0000 Å	factor :
IIO	:	$(-7, 1/20 \times 10^5, 1, 0.386 \times 10^5)$	
111	:	$(-3, 2572 \times 10^5, 1.0500 \times 10^7)$	[]
UT Um1	:	$(-3.2572 \times 10^5 + 6.6075 \times 10^4)$	L J
OIIIT	·	(3.2372410 , 0.0073410)	online analysis
geometry information			total incoming .
S.	•	50 0000 m	total reflected :
S	÷.	0 1000 m	total transmitted :
s-value at center	÷	24.9500	reflectivity :
t-value at bottom	÷	25.0500	transmittance :
<pre> @ at center </pre>	:	10.0000 mrad	phase at center :
θ at left edge	:	9.7134 mrad	mean of phase :
θ at right edge	:	10.3136 mrad	stddev of phase :
$\Delta \Theta$ (Bragg-deviation)	:	1.3370 mrad	±
peak expected near	:	1.1367 mrad	simulation informat:
			user time :
layer information			system time :
mirror length	:	12.0000 mm	virtual memory usage :
layer thickness	:	5.0001 nm	
ML structure	:	0.1250 µm	osterhof@pcoptics01 ~/g,
number of layers	:	26	
simulation inform	nat	ion	
grid points, s	:	60×10 ³	
grid points, t	:	25	
grid ratio	:	40.0000	
virtual memory usage	:	32.5 MB	

Using XMLS

- flexible command line interface allowing for loops and hooks
- GUI implemented by webserver: control simulation from your browser, fully remote-controlled and independent of control PC's capabilities

New ESRF multilayer mirrors

focal region allows for estimating the focus properties of next-generation ML focusing mirrors.

Summary

- Wave-optical theory / numerical code describing focusing multilayer mirrors - Optimisation of next-generation optics - Model allows for sub-nm focus sizes

Outlook

- real structure effects: surface roughness / figure errors / errors inside the structure
- partially coherent sources
- polychromaticity / short bunches

Related publications

Numerical optimisation of the layer shapes promises focus sizes below the 10 nm scale (for a point-source) for the NINA branch of ESRF's new UPBL04 beamline.

A model system going beyond what is possible to fabricate shows no fundamental limits of the proposed analytical scheme below focus sizes smaller than 1 nm.

References

- H. Mimura, et al, "Breaking the 10 nm barrier in hard-X-ray focusing", |1| Nature Physics 6 (2010).
- Ch. Morawe, M. Osterhoff, "Curved graded multilayers for X-ray [2]
- nano-focusing optics", NIM A 616 (2010). M. Osterhoff et al, submitted / PhD thesis (2012). [3]
- M. Osterhoff et al, in preparation / PhD thesis (2012). [4]