Users' Meeting | January 2015 | Poster P334

Towards multi-order hard x-ray imaging with multilayer zone plates

M. Osterhoff¹, R.N. Wilke¹, J. Wallentin¹, C. Eberl², F. Döring², H.U. Krebs², M. Sprung³, T. Salditt¹

¹ Institut für Röntgenphysik, Georg-August-Universität Göttingen ² Institut für Materialphysik, Georg-August-Universität Göttingen ³ DESY Photon Science, Hamburg

Multi-Order Zone Plates

- high-resolution Multilayer Zone Plate (MZP) focusing down to 5 ... 10 nm (2D, 7.9 < E < 18 keV); note that pre-focusing adapts the coherence length of $> 50 \,\mu$ m to the lens size of $< 5 \,\mu$ m
- lens fabrication with Focused Ion Beam
- overview and detail of MZP zone quality with TEM
- diffractive optics yield a multitude of focii:

can we image without an Order Sorting Aperture?

- idealised detector image to show than one can disentangle 1st from 3rd order (but +/- still remains)
- simulation of intensity along optical axis, showing +1st and +3rd order focus and higher orders; compare to d
- g typical detector image; compare to e

(a) Experimental Setup

U29 @ P10

Imaging Experiments

- GINIX set-up at P10 beamline, PETRA III right:
- bottom: alignment of lens (left) and sample (right) is facilitated by optical in-line microscope

Experiments so far:

Energy:	7.9 keV	13.8 keV	18.0 keV
Focal length:	50 µm	250 µm	470 µm
Materials:	W / Si	W/ZrO_2	Ta_2O_5 / ZrO_2
Pre-focussing:	KB mirror	s, CRL	2 5 2
Detectors:	Pilatus 30	0k, sCMOS	5

Determining the focal spot size

far-field intensities (Pilatus detector, horizontally stitched); its auto-correlation yields ... a "typical length scale" of the diffraction strength; full width at half maximum of 9.18 nm corresponds to focus structures of 4.6 nm

Göttingen MZP

Central core: thin glass fibre of 800 nm $\leq \phi \leq 2 \mu$ m; so far lenses with outer radius of $r_N \leq 7 \mu m$ fabricated by Pulsed Laser Deposition of alternating layers, optical thin and optical thick material, e.g. W / Si

Best results found for material combination Ta₂O₅ und ZrO₂ found: - very constant and high PLD rates during deposition, - no droplet formation, opposed to Si, - very clean and thin layers possible, up to 3 nm and below, - cumulative smoothening residual roughness of core, - focussing efficiency into +1st order: 6.9 % at 18 keV - in principle, optical length >> 10 µm possible

MZP fabrication

Pulsed Laser Deposition (PLD) is a convenient method to grow alternating layers on a rotating glass fibre

- using Focused Ion Beam (FIB) facility, the lens can be attached to a mount and cut to the desired optical length
- overview TEM image of a lens
- high-resolution view showing 5 nm layers of high surface quality
- final polishing of the MZP with FIB
- detailed TEM image shows high quality layers, without cumulative roughness
- layer thicknesses closely match the zone plate law

- three-planes phase reconstruction scheme [H.M. Quiney et al., Nature Physics 2, 2006]
- log-scaled colour coded measured intensity (sCMOS detector)
- log-scaled colour coded reconstructed intensity
- reconstructed amplitude in lense plane,
- rekonstructed phase in lense plane;
- due to beam stop (necessary to protect detector from 0th order), zones inside central core appear
- reconstructed zones agree with measured layers
- reconstructed intensity in focal plane (interpolated)
- horizontal and vertical line profiles of i yield FWHMs of 4.3 nm × 4.7 nm, the so-far smallest 2D hard x-ray focus

experiment at 7.9 keV; focal length 50 µm; W / Si similar results at 13.8 keV; focal length 250 µm; W / ZrO₂

Holography

- 2D scan of semiconductor nano wire ...
- b,c in diverging -1st MZP order shows holographic images ...
- averaged over 1647 positions, with detector ROI co-moving; no encoder / interferometer positions used yet
- empty corrected image to cancel shadow from beamstop and inhomogenuous illumination
- phase retrieval: holographic reconstruction plus Gerchberg-Saxton

Imaging by scanning

A Siemens star test pattern was scanned laterally in the +1st focal plane. far-field showing a holographic image of the star; this is attributed to the divergent illumination of the -1st order.

Intensities I(X,Y) are recorded for every scan position (x,y). Differential phase contrast (horizontal) $I_{\mu}(x,y)$:

- $I_h(x,y) = \frac{\sum_{X,Y \in \text{ROI}} X \cdot I(x,y;X,Y)}{\sum_{X,Y \in \text{ROI}} I(x,y;X,Y)}.$
- shows this signal, summed over full detector,
- shows I_{μ} only for orange detector ROIs,
- shows the signal for the green ROI.

(a) Single Holographic Image

(C) STXM / holographic -1st order ROIs

(b) STXM / full detector

500 r

(d) STXM / +1st order RO

curvature is sufficiently small, the c.o.m. stays within the ROI and can be used for imaging - using classical STXM algorithms, see the next box on the right side \triangleright .

- STXM in divergent illumination yields holographic images,
- STXM in +1st focale plane yields differential phase contrast,
- MZP orders can be sorted out by "Software-OSA".

References

- [Osterhoff 2015] M. Osterhoff, C. Eberl, F. Döring, R.N. Wilke, J. Wallentin, H.U. Krebs, M. Sprung, T. Salditt Towards multi-order hard x-ray imaging with multiylayer zone plates Journal of Applied Crystallography, (accepted) C. Eberl, F. Döring, T. Liese, F. Schlenkrich, B. Roos, M. Hahn, T. Hoinkes, A. Rauschenbeutel, [Eberl 2014] M. Osterhoff, T. Salditt, H.U. Krebs Fabrication of laser deposited high-quality multilayer zone plates for hard x-ray nanofocusing Applied Surface Science 307, 638-644 (2014)
- [Döring 2013] F. Döring, A.L. Robisch, C. Eberl, M. Osterhoff, A. Ruhlandt, T. Liese, F. Schlenkrich, S. Hoffmann, M. Bartels, T. Salditt, H.U. Krebs Sub-5 nm hard x-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate Optics Express 21, 19311-19323 (2013)
- [Osterhoff 2013] M. Osterhoff, M. Bartels, F. Döring, C. Eberl, T. Hoinkes, S. Hoffmann, T. Liese, V. Radisch, A. Rauschenbeutel, A.L. Robisch, A. Ruhlandt, F. Schlenkrich, T. Salditt, H.U. Krebs Two-dimensional sub-5 nm hard x-ray focusing with MZP Proc. of SPIE Vol. 8848 (2013)
- [Ruhlandt 2012] A. Ruhlandt, T. Liese, V. Radisch, S.P. Krüger, M. Osterhoff, K. Giewekemeyer, H.U. Krebs, T. Salditt A combined Kirkpatrick-Baez mirror and multilayer lens for sub-10 nm x-ray focusing AIP Advances 2, 012175 (2012)

Funding by Deutsche Forschungsgemeinschaft DFG through Sonderforschungsbereich 755 "Nanoscale Photonic Imaging" and BMBF-Verbundforschung, grant \mathcal{N}° 05K13MG5, is gratefully acknowledged.

Future

We are envisioning hard x-ray imaging using MZPs with 10 nm resolution, addressing								
drift	interferometric control in commissioning							
vibrations new s		<i>w</i> sample tower / interferometry						
slow scans	faster pi	aster piezo scanner in commissioning						
efficiency 6.9%	thicker lenses (already got to 7 μm); optimised layer shape along optical axis, e.g. wedged							
design of efficient MZP) fabrication by PLD and FIB	 understand and control volume diffraction / waveguiding effects check stability and endurance 	W/Si				
optimisation of imaging experiment	of	improvement of data analysis	 in FEL beam use for nano-diffraction, nano-fluorescence, nano- stimulation (e.g. XBIC) 	1				

Users' Meeting | January 2015 | Poster P21

dada: a web-based collaborative x-ray images visualisation and analysis tool

M. Osterhoff¹, T. Salditt

¹mosterh1@gwdg.de

Motivation

Challenges as university users of synchrotron / lab sources:

- different detectors / formats / compressions (changes even between beamtimes)
- different folder structure / file name formats (the famous %04d with varying 0's and 4's, "the mess")
- Bachelor students come and go
- their need: "just show me that image!"

Our idea

- centralised, unified access to (2D, x-ray detector) images
- standardised **algorithms**
- UI: web-GUI, Matlab interface, {C, C++, Python} libraries possible
- no local copy of data
- use **central** cluster

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Funding by Deutsche Forschungsgemeinschaft through Sonderforschungsbereich SFB 755, "nanoscale photonic imaging", and by the Deutsches Ministerium für Bildung und Forschung under grants № 05K13MG5 is gratefully acknowledged.

often heard on the floor:

"I got **this algorithm** from her, but the one from him is newer, but then I included this piece of code taken from someone else to open that image, but now I forgot the value of alpha, and tomorrow I have to print my thesis."

000		dada 0.9						
Reade								
ray analysis ? +	Instrument	Experiment	Detector	Sample				
	GINIX	LIVE	p300	align_01				
nvisible to the user:	Julia	run39	max22	align_02				
ecipe-parser.c	Verona	run38		Siemens_01				
ar* recipe_dispatch_filename(struct recipe_input* input, int s) {	Rosi	run37		Siemens_02				
<pre>int tree = 0; /* read from DB */ const char* det = NULL; /* from URI */</pre>	liane-cdi	run36		JWP23B_01				
	ID19	run35		JWP23B_WF18_1				
if (strcmp(det, "p300") == 0) detector = DET_PILATUS; if (strcmp(det, "p1m") == 0) detector = DET_PILATUS;	cSAXS	run34		JWP23B_WF18_2				
f (strcmp(det, "max22") == 0) detector = DET_MAXIPIX;	ID11	run33		.JWP24A 01				
J switch (tree) {	BM20	run32		JWX11 1				
case 0: /* GINIX (old) */	ID16	run31		.JWX11_2				
case DET_PILATUS: fmt = "%s/det/%s/%s/%s_%05d.cbf"; break;		run30		JWX11_3				
<pre>case DET_MAXIPIX: fmt = "%s/det/%s/%s/%s_%04d.edf"; break;</pre>		run29		_				
ר fprintf(mem, fmt, base, det, nfl, nfl, num); break;		run28						
<pre>case 1: /* GINIX (current) */ guitch (detactor) {</pre>		run27						
<pre>case DET_PILATUS: fmt = "%s/det/%s/%s/%s_%05d.cbf"; break;</pre>		run26						
<pre>case DET_MAXIPIX: fmt = "%s/det/%s/%s/%s/%dd.edf"; break; case DET_LAMBDA: fmt = "/s/det/%s/%s/%s/%bf.break;</pre>		run25						
}		run24						
<pre>fprintf(mem, fmt, base, det, nfl, nfl, num); break; case 2: /* simple pilatus */</pre>		prerun24						
fprintf(mem,"%s/%s/%s/%s_%05d.cbf",base,det,nfl,nfl,num); break;		run23						
<pre>] /* currently, 11 different file name strings are defined */ return fname: }</pre>		101120						

- cached results / archive by URL, ID
- control and view from anywhere, i.e., the internet
- https and authentication, fully transparent proxy

Try it!

data daemon:

- database of instruments, experiments, used detectors
- one implementation of folder structure / file names
- web-based GUI, export to PDF, import from Matlab, other libraries planned
 - basic tasks: find that image! show that image! analyse those images!

Status

Detectors:

Pilatus (cbf, edf, tiff) Maxipix (edf) FReLoN (edf) certain TIFFs certain HDF5s

SPEC scans (currently, 1D)

Single image:

ROI, binning, summing, divide, subtract, movie, lin/log, colourbar, line profiles, export to png/pdf/Matlab

Composite and STXM darkfield, differential phase

Control software: SPEC

- **Feedback** from dada:
- counting on 2D detectors,

At the beamline

GINIX set-up @ P10 beamline 🛛 🚰

- centre-of-mass,
- peak width
- Online **analyis**:
- print-outs including counting time and motor positions
- STXM measurements live from SPEC
- composite images (2D array of 2D images)
- clever combinations of ROI/binning/composite

If you can see this text, the tablet is obviously absent.

Please visit

http://dada.k-raum.org

for a small demo.

Plans

Detectors:

advanced HDF5 routines, fluorescence detectors

2D SPEC scans

Single image: radial / azimuthal profiles, fluorescence maps

Composite and STXM

more contrasts, combine with in-line mic

Behind the curtains

C back-end, lighttpd for HTTPS, authentification and proxy

web-GUI let's you browse images and adjust parameters

URI defines "module" (show, scan, stxm etc) and experiment / detector / sample / image number

query string defines modifiers: lin/log scale, colour map, ROI, STXM parameters etc

URI is transformed into JSON-encoded "recipe":

http:// dada / stxm / ID11/proposal/maxipix/nanowire1/42 ? horz=161&vert=161&palette=bwr&scale=log ...

hash(JSON): look-up in cache database (sqlite3) if cached: return { image, processed data, meta data etc. } otherwise: process, calculate, render, cache, serve

STXM darkfield contrast together with composite images (2D × 2D) during alignment of hMSC cells in nanodiffraction experiment (M. Bernhardt, unpublished)

combining STXM signal with detector images per position to measure strain in

Scan 246

-2 Volt

-2 Volt

Scan 255

Scan 251

horizontal composite of vertically binned images (and vice versa) to visualise rocking scans of in operando contacted nanowire; here for different bias voltages (J. Wallentin, unpublished)